Decision 2 Game Theory Answers

6 (a)	4			
	(-2,2,4)<(2,4,5) So S_1 dominated by S_2	El		
				note > sign
	So C_3 dominated by C_2	El	2	
(b)	$2 \times 2 \text{ game now} \begin{bmatrix} c_1 & c_2 \\ s_2 \\ s_3 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ 5 & 1 \end{bmatrix}$			
	Minimum of rows (2,4)=2	Ml		correct method for either S or C
	Minimum of $(5,1)=1$			
	Choose maximum = (2)	Al		play safe for Sam is S_2
	Max of column 1 = max (2,5) = 5 Max of column 2= max (4,1) = 4			
	Choose minimum = 4	Al		play safe for computer is C_2
	Since $2 \neq 4 \Rightarrow$ not stable solution	El	4	
(c)(i)	Computer picks C ₁			
	Expected game = $2p + 5(1-p)$	Ml		
	=5-3p	Al		
	Computer picks C ₂			
	Expected gain $=4p+(1-p)$			
	=1+3p	Al	3	
(ii)	Best mixed strategy			
	5 - 3p = 1 + 3p	Ml		
	$5 - 3p = 1 + 3p$ $\Rightarrow p = \frac{2}{3}$	Al	2	
(iii)	Expected points gain			
	$=5-3\times\left(\frac{2}{3}\right)$			Or $1+3\left(\frac{2}{3}\right)$
	=3	B1	1	
	Total		12	

6(a)	Gain for Rowan +gain for Colleen in each strategy = 0	El	1	Gain for one = loss of other
(b)	-3 -4 1 -4 1 5 -1 -1 -2 -3 4 -3 Max 1 5 4	Ml		minimum of rows & max of columns or maximum of minima or minimax
	Max 1 5 4 3	Al		All values correct (seen) or words maximin and minimax highlighted
	$1 \neq -1 \Rightarrow no$ stable solution	El	3	
(c)	R, dominates R, $ (-3,-4,1) \ < (-2,-3,4) \ \text{so never play R}_1 $	El	1	
(d)(i)	R chooses R ₂ with prob p \Rightarrow choose R ₃ with prob $1-p$ \Rightarrow expected gain when C plays C ₁ : $p-2(1-p)=3p-2$	M1		Attempt at one expression
	$C_1:5p-3(1-p)=8p-3$ $C_2:-p+4(1-p)=4-5p$	Al		All correct unsimplified
	Plot expected gains for $0 \le p \le 1$	Ml		
	4 0 -2 -3	Al		Condone mirror image
	Choosing their "highest" point $C_1 & C_3 \text{ intersect } \Rightarrow 3p-2=4-5p$	Ml		Any 2 lines
	$\Rightarrow p = \frac{3}{4}$	Al		
	$\Rightarrow \text{play R}_2 \text{ with prob } \frac{3}{4} $ and R ₃ with prob $\frac{1}{4}$	El√	7	Statement of strategy
(ii)	Value of game is $3 \times \frac{3}{4} - 2 = \frac{1}{4}$	Bl	1	CSO or equivalent, eg 0.25
	Total		13	

4(a)(i)	Row min			
	-4 -2 -1	M1		Attempt at row minimum and column maximum
	Col max 5 -1 3	A1		all figures correct
	min (col max) = max (row min) ⇒ stable solution	E1	3	
(ii)	Ros plays III and Col plays Y value of game = -1	B1 B1	2	
(b)(i)	Ros plays R_1 with probability p and R_2 with probability $1-p$			
	Expected gains when Col plays:			
	$C_1:3p-2(1-p)=5p-2$			
	$C_2: 2p - (1-p) = 3p - 1$	Ml		attempt at least 2
	$C_s: p + 2(1-p) = 2-p$	A1		correct unsimplified
	Plot expected gains against p for $0 \le p \le 1$	Ml		
	3- 2- 1- 0-1- -1- -2-	Al		correct (must see 0 or 1 on P axis, or implied by their numbers) A0 if not possible to see highest point o region being correct
	Choose highest point of region below lines $\Rightarrow 3p-1=2-p$	Ml		must be this pair of lines or their highes point
	leading to $p = \frac{3}{4}$	A1		
	Therefore Ros plays R_1 with prob $\frac{3}{4}$			
	and plays R_1 with prob $\frac{1}{4}$	ві√	7	ft their p from any lines
(ii)	Value of game = $3 \times \frac{3}{4} - 1$			
	or $\left(2-\frac{3}{4}\right)$ $-1\frac{1}{4}$	B1	1	
	Total		13	

	Total		14	
(iv)	Value of game = $3 \times \frac{2}{3} - 1 = 1$	Bl	1	Or 5 – 4 = 1
	and $R_2 \frac{1}{3}$ of time	El√	3	
	\Rightarrow Rose plays R, $\frac{2}{3}$ of time			
	$\Rightarrow p = \frac{2}{3}$	Al		CSO
	$\Rightarrow 3p - 1 = 5 - 6p$ $9p = 6$	Ml		Solving this equation
(iii)	Choosing A – highest point in feasible region			
	-3			indicated
	0	Al	2	All correct with values at $p = 0$ and $p = 1$
	2	Ml		Plotting at least 2 lines
(n)	Expected gain			
(ii)		AI	٥	An correct simplified
	$C_2: 2p - (1-p) = 3p - 1$ $C_3: -p + 5(1-p) = 5 - 6p$	Al	3	All correct simplified
	5p + -3(1-p) = $8p-3$ $C_2: 2p - (1-p) = 3p-1$	Al		One correct simplified
(c)(i)	C ₁ played, expected gain for Rose: 5p + -3(1-p)	Ml		Any correct expected gain unsimplified
	$R_{z}(4,1,-2) < R_{t}(5,2,-1)$	El	1	
a.		Al	2	
	Min $(5, 2, 5) = 2$ $2 \neq -1 \Rightarrow$ no stable solution	Ml	,	
(ii)	Max C ₁ = 5; max C ₂ = 2; max C ₃ = 5			
	\Rightarrow Play safe strategy $R_{_1}$	Bl	2	
	Max min = -1	EI		
	$Min R_{2}(-3,-1,5) = -3$ $Min R_{2}(4,1,-2) = -2$	El		
-(-)(-)	$Min R_1 (5, 2, -1) = -1$			